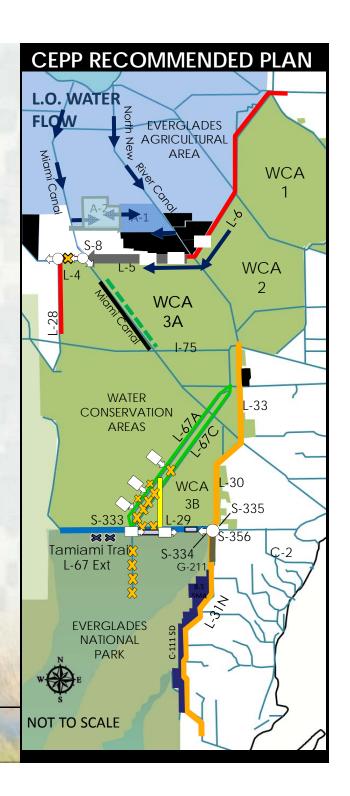
#### CENTRAL EVERGLADES PLANNING PROJECT


How Monitoring for Restoration Success Informs Water Management and Project Implementation

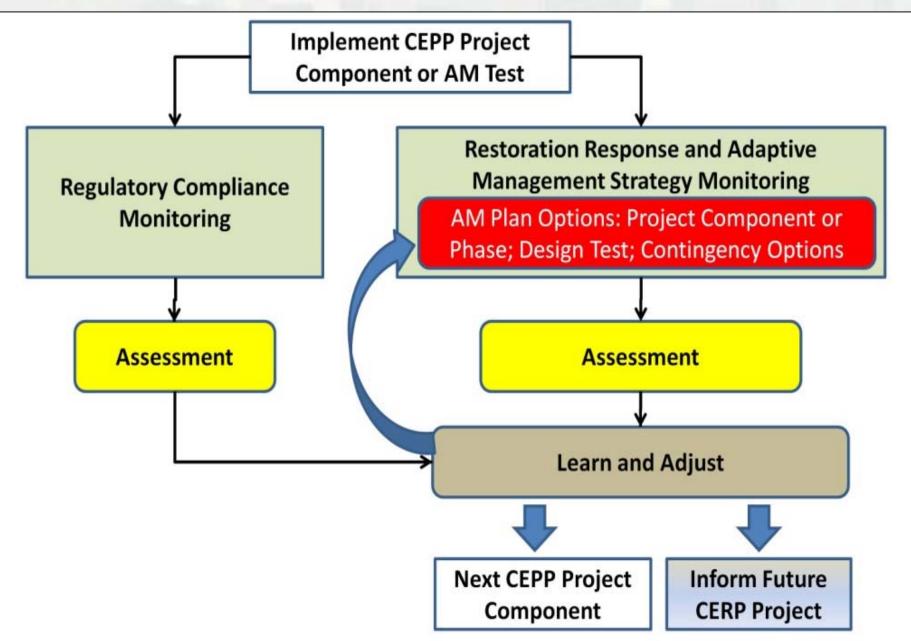


# CEPP ADAPTIVE MANAGEMENT & MONITORING PLANS

- Identify the monitoring information needed to inform CEPP implementation
- Document restoration progress
- Consists of:
  - Adaptive Management Plan
  - > Hydrometeorological monitoring plan
  - Water quality monitoring plan
  - > Ecological monitoring plan






#### WHAT IS ADAPTIVE MANAGEMENT?

- A structured approach for addressing uncertainties by:
  - > Testing
  - Providing scientifically sound information for decision making
  - Adjusting project implementation if necessary
- Takes place throughout the life cycle of the project, including during planning
- Focuses on confirming & improving project
   performance related to project objectives & constraints





## ADAPTIVE MANAGEMENT STRATEGIES & PROJECT IMPLEMENTATION DIAGRAM



## WHAT IS A PROJECT'S MONITORING AND ADAPTIVE MANAGEMENT PLAN?

## The Plan is a combination of two required pieces of CERP Project Implementation Reports (PIRs):

- A monitoring plan specifies the data collection, analysis,
   & reporting that will inform project performance
- An Adaptive Management Plan guides the use of collected data to:
  - Maximize project benefits while reducing project costs
  - > Help inform implementation sequencing of CEPP
  - Understand how monitoring will determine if adjustments are needed in project implementation to improve performance





## HOW DOES THE AM PLAN RELATE TO THE REST OF THE MONITORING PLAN?

#### Adaptive Management Plan (AM Plan) includes:

- AM-relevant uncertainties
- Strategies for adjusting certain aspects of CEPP if necessary
- Recommendations
- Potential adjustments based on a scientifically efficient & sound process of learning from data
  - Hydrometeorological Monitoring
  - Water Quality Monitoring
  - Ecological Monitoring
  - RECOVER Monitoring & Assessment Plan (MAP)
  - Other monitoring data





#### CEPP ECOLOGICAL MONITORING PLAN

- Identify monitoring necessary to inform decision-makers, agencies & public on CEPP's achievement of ecological restoration success
- Monitor ecosystem responses to:
  - > Changes in water depth
  - Hydroperiod duration
  - Water flow velocity
- Ensure temporal &spatial coverage of monitoring parameters to detect changes at the project level
- Coordinate with the RECOVER MAP to address CEPP-specific needs not included in the MAP
- Contribute to the CEPP AM Plan





#### CEPP-ECOLOGICAL MONITORING PLAN IN THE GREATER EVERGLADES





- CEPP-ECM will focus in the areas where CEPP modifications are expected to have the greatest impacts and across ecotones
- Design sampling to optimize RECOVER & Compliance monitoring networks
  - O NORTHERN WCA-3A HRF
- BLUE SHANTY FLOW-WAY
- SHARK RIVER SLOUGH

Restore seasonal hydroperiods & freshwater distribution to support a natural mosaic of wetland & upland habitat in the Everglades System



 Quantification of subsidence, accretion, & sediment transport are required to understand the role that flow direction, velocity, & water depth play in restoring & maintaining the ridge-slough-tree island landscape



- Monitoring Attributes:
  - soil elevation & accretion along the ridge-sloughtree islands landscape
  - vegetation change along hydrologic gradients





Improve sheet flow patterns and surface water depths and durations in the Everglades system in order to reduce soil subsidence, frequency of damaging fires, & decline of tree islands and decrease salt water intrusion



- Organic soil loss & accumulation are in equilibrium as a function of sheet flow & water depth patterns the effect of muck fire events on soil oxidation & subsidence
- Improvement of water sheet flow will help to decrease the rate of mangrove expansion into the freshwater wetlands



- Monitoring Attributes:
  - Soil accretion & soil elevation in mangrove communities
  - Porewater & soil salinity
  - Biological indicators such as algae and pink shrimp





Reduce high volume discharges from Lake Okeechobee to improve the quality of oyster & SAV habitat in the Northern Estuaries



- Salinity conditions will improve the habitat for oysters
   & submerged aquatic vegetation (SAV)
- Monitoring attributes:
  - Oysters
  - > SAV
- Clear opportunity for adaptive management because the monitoring data will readily inform potential project adjustments
  - The Adaptive Management Plan provides more detail about the potential management actions that could be taken in response to the data

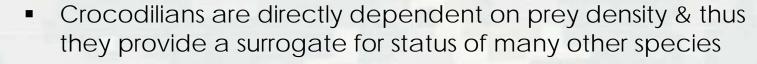


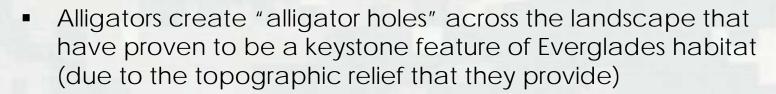


## Reduce water loss out of the natural system to promote appropriate dry season recession rates for wildlife utilization






- Successful nesting of wading birds requires habitat conditions, including wet season prey production & dry season prey availability, which depend on hydroperiods & well-timed water level recession rates
- Restoration of multi-year hydroperiods in historically appropriate places in the Everglades will result in increased density of aquatic fauna & large fish
- Monitoring attributes:
  - Monitoring aquatic prey populations during the wet season & dry season
  - Monitoring wading bird nesting success






### Restore more natural water level responses to rainfall to promote plant & animal diversity & habitat function









 More natural hydrological patterns with dry downs, no more frequent than once every 3-5 years will improve both alligator body condition & relative density of alligators

- Monitoring attributes:
  - Alligator & crocodile density in the landscape
  - Alligator & crocodile body condition





#### ELEMENTS OF THE CEPP ECOLOGICAL MONITORING PLAN

#### **CEPP OBJECTIVE**

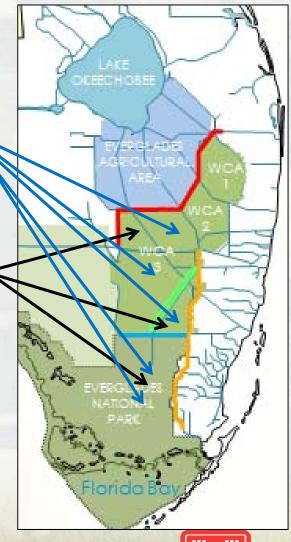
- 1. Restore seasonal hydroperiods...
- Improve sheetflow...
- 3. Reduce high volume discharges...
- 4. Reduce water loss ...
- 5. Restore more natural water level responses to rainfall

#### ATTRIBUTE TO BE MONITORED

Marsh Soil Elevations

Marsh Vegetation Change

**Vegetation Mapping** 


Stage, Flow, Saltwater Intrusion

Tree Island Soils & Vegetation <

Biological Indicators (Algae, Cattail)

Prey (Small Fish, Crayfish, Shrimp)

Predators (Alligators, Crocodiles, Wading Birds)







#### **ACKNOWLEDGEMENTS**

USACE & South Florida Water Management District CEPP Project Delivery Team Members

Many interagency team members who contributed to the CEPP Adaptive Management and Monitoring Plans

Restoration Coordination & Verification (RECOVER)

Team Members





## **QUESTIONS?**



